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We construct an effective action for Polyakov loops using the
eigenvalues of the Polyakov loops as the fundamental variables. We
assume Z(N) symmetry in the confined phase, afinite differencein
energy densities between the confined and deconfined phases as

T - 0, and a smooth connection to perturbation theory for large T.
The low-temperature phase consists of N — 1 fields fluctuating around
an explicitly Z(N) symmetric background. In the low-temperature
phase, the effective action yields non-zero string tensions for all
representations with non-trivial N-ality. Mixing occurs naturally
between representations of the same N-ality. Sine-law scaling
emerges as a special case, associated with nearest-neighbor
Interactions between Polyakov loop eigenval ues.

Issues to be Addressed

- Construction of general effective action with minimal assumptions

- Comprehensive model for confined phase, deconfined phase, and phase
transition

- Derivation of confinement from Z(N) symmetry for all representations of
non-trivial N-ality

- Specia nature of Sine-law scaling



Basics of Finite Temperature Physics

Low Temperature Behavior
(TrEPP OO TrEP(y)) o exp| — 2 x -] ]
High Temperature Behavior
(TrePy = mzP z e Z(N)

Possible Scaling Behavior s

Casimir Scaling

where Cr isthe quadratic Casimir invariant for the representation R.
Appearsto work well for U(3)4 (Deldar 2000; Bali 2000).

Z(N) Scaling
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where k isthe smaller of N-alities of the representations R and R

k = min(kr, kg). Z(N) scaling should be obtained from Casimir scaling as
r - oo if there is mixing between representations of the same N-ality. For
thefirst [ 5 ] antisymmetric representations made by stacking boxesin

Y oung tableux, Casimir and Z(N) scaling are identical.
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Sine-law scaling
sn()
; T F
sin(§)
was obtained by Douglas and Shenker (1995) for softly broken N = 2 super

Y ang-Mills theories and by Hanany, Strassler, and Zaffaroni (1998) for
MQCD.
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Simulation Results

k=2 =3 =4 Ref
SU(4) sinelaw | 1.414
SU(4) Z(N) 1.333
SU(4)4 1.370(20) LTW
SU(4)4 1.403(15) DPRV
SU(4)3 1.3548(64) LT
SU(6) sinelaw | 1.732 2
SU(6) Z(N) 1.6 1.8
SU(6)4 1.675(31) | 1.886(61) LTW
SU(6)4 1.72(3) 1.99(7) DPRV
SU(6)3 1.6160(86) | 1.808(25) LT
SU(8) sinelaw | 1.848 2414 2.613
SU(8) Z(N) 1.714 2.143 2.286
SU(8)4 1.779(51) |2.38(1) |269(17) LTW

LTW= Lucini, Teper, and Wenger (2004)
LT = Lucini and Teper (2001,2002)
DPRV = Del Debbio, Pangopoulos, Rossi, and Vicani (2002)




Multiple Order Parameters

We know there are an infinite number of possible Polyakov |oop order
parameters. Every irreducible representation R has an associated N-ality kg
such that

TrrP - Z*TrgP

under aglobal Z(N) transformation, with kg € {0,..,N—-1}. Any
representation with kg + O gives an operator TrrP which is an order
parameter for the spontaneous breaking of the global Z(N) symmetry.
Alternatively, we may consider the operators Tr ¢P" which transform as

TreP" —» 2" TreP".

These operators transform non-trivially under Z(N) provided nisnot a
multiple of N.

In a gauge where Ag is time independent and diagonal, in which case we
may write for the fundamental representation

Pix = exp(if;)dik
where we shall refer to the N numbers 0; as the eigenvalues. They are not
independent because det(L) = 1 implies

D6, = 0mod 27
j

The information in the different representations is redundant. All the
information is contained in the N — 1 independent eigenvalues of P.

In constructing an effective action, we cannot use P, regarded as an
SU(N) matrix, asthe fundamental field for building an action without
introducing spatial gauge fields, lest we introduce spurious Goldstone
bosons in the deconfined phase associated with the off-diagonal
components. We cannot use Tr P alone, because it does not specify the
other Polyakov loopsfor N > 3. The cases of SU(2) and SU(3) are specia
because only in those two cases does Tr g P specify all the other fields.
Beginning with SU(4), there are sets of eigenvalues for which

TreP = 0and TreP? # 0
(Meisinger, Miller, and Ogilvie (2002). From the characteristic polynomial,

one may show that the eigenvalues of a special unitary matrix are
determined by the set {TrP*} with k = 1..N — 1, and of course vice versa.



P in the confined phase

In both the confined and deconfined phase, we would like to use our
effective theory by starting from a classical field configuration which has
the symmetries of the phase. In the confined phase, Z(N) symmetry requires
that TreP* = 0 for all k not divisible by N. Enforcing this requirement for
k = 1to N - 1leadsto aunique set of eigenvalues viathe characteristic
equation zN + (-=1)N = 0, but it is instructive to derive the set another way.
For temperatures T bel ow the deconfinement transition T4, center
symmetry is unbroken. Unbroken center symmetry impliesthat zP is
equivalent to P after an SU(N) transformation:

ZPo = gPog*.

This condition in turn implies TrrP = O for all representations R with
non-zero N-ality, which means that al representations with non-zero
N-ality are confined. The most general form for Po may be given as hdht,
whereh € SU(N), and d is the diagonal element of SU(N) of the form

d = wdiag[z, 7%, ..,.2N = 1]

with wisaphase given by w = exp[—(N + 1)zi/N]. Strictly speaking, wis
necessary only for N even, but it is convenient to use it consistently. We
will henceforth identify Po with d. Another useful representation is

(Po)j = Sixexp[i6f | where

The Z(N)-symmetric arrangement of eigenvaluesis uniform spacing
around the unit circle.



Fluctuations around the Z(N)-symmetric vacuum

L et us now assume that Py is the global minimum of the potential V
associated with the effective action for temperatures |less than the
deconfining temperature T4. Because the gauge fields transform as the
adjoint representation, V is a class function depending only on
representations of zero N-ality. It isthus afunction only of the differences
in eigenvalues 6; — O, with complete permutation symmetry as well. In the
low-temperature, confining phase, we consider small flucuations about Py,
defining 0; = 07 + 0;. For small fluctuations

N N
TrePk = zjwkzk“e”“”n ~ Zwkzk”ikéen
n=1 n=1
if kisnot divisible by N, and Tr gP* takes the form of a discrete Fourier
transform in eigenvalue space. We define the Fourier transform of the
fields ¢, as

N
br = D250,
n=1

s0 TrePK = ikwkgy. We will show below that the fields ¢ are the normal
modes of the Z(N)-symmetric phase in a quadratic approximation. The
mode ¢n = ¢o isidentically zero for SU(N), and from the reality of 0, we
have ¢n-n = (¢n)*. Inthe case wherek isdivisibleby N, TrePk hasa
leading constant behavior of NwX, and the term linear in ¢ vanishes.

Note for future use that operators with the same N-ality, such as
TrePK and (TreP)X are very different operators, even at lowest order, being
proportional to ¢y and (¢1)¥. Group characters yr(P) will be represented
as sums of terms with the same N-ality, but with different mode content.
For example, in SU(4), the 10 and 6 representations are given by

xsa = 5[(TreP)2 £ TreP2] = L4295 +ig3)

In general, an operator of a given N-ality may produce several different
excitations, and only the lightest states will dominate at |arge distances.
Characters are complicated functions of the underlying modes.

Thetransition from Casimir scaling to scaling based on N-ality is
the standard field-theor etic mechanism of mixing and decay.



Seif at high temperatures

The form of the effective action at high temperatures can be written as
Sut = B | X[ T2Tre (VO)? + Va(0) ]

Bhattacharya, Gocksch, Korthals Altes, and Pisarski (1992). The kinetic
term is obtained from the underlying gauge action via

2TreF2, > 22Tre (VAo)? - T2Trg (V6)?. The potential V1. (6) is
obtained from one-loop perturbation theory. For our purposes, it is
conveniently expressed as

4
Vi (0) = - %%[IWP”IZ -1]

M+ 1M

-
=

2
72

[N — 1+ ) cos(n(d; — 0k)) J
n=1 j=k
(Gross, Pisarski, and Yaffe 1980; Weiss 1981,1982). This series can be
summed to a closed form in terms of the 4th Bernoulli polynomial. The
complete one-loop expression has been obtained recently by Diakonov and
Oswald (2003; 2004); the complete kinetic term has a 6-dependent factor in
front of the derivatives.

There are N equivalent solutions of the form

2r
Qj(p) _ Tp

related by Z(N) symmetry breaking. All of these solutions break Z(N)
symmetry, with TreP = Nexp(2zip/N). For these values of 6, we recover
the standard black-body result for the free energy.

Theform of the effective action isfixed at high temperature by
perturbation theory.



General Form of S

We will assume that a sufficiently general form of the action at all
temperatures has the form

Ser = B | d3X[KT2Tre (V0)2 + V(0) ]

where k is atemperature dependent correction to the kinetic term, and V is
afunction only of the adjoint eigenvalues 6; — Oy.

Form of the potential term at low temperatures

We assume that there is afinite free energy density difference associated
with different valuesof Pas T — 0. Because the eigenvalues are
dimensionless, this requires terms in the potential with coefficients
proportional to (mass)*as T - 0.

We can expand the potential to quadratic order around Pg

~ V(O 1| _03V .
V(0) = V(6°) + le; > [ 56,20 ]9059’59"
where the coefficient in the expansion depends only on |j — k|. Thelarge-N
limit can be used to justify the assumption that fluctuations are small. The
quadratic pieceis thus diagonalized by the Fourier transform, and we can
write

N-1
V(0) = V(0°) + D Miigndn-n.
n=1

Similarly, the kinetic term becomes

N-1
KT2Tre (V0)2 = K12 5™ (V40) (Vhnin).
n=1

Once an ordering of eigenvaluesis chosen, Z(N) symmetry is expressed as
adiscrete translation symmetry in eigenvalue space. If we write the
higher-order parts of S in terms of the Fourier modes ¢, each interaction
will respect global conservation of N-ality. For example, in U(4), an
interaction of the form ¢2¢ is allowed, but not ¢2¢3.



Correlation Functions below Ty

If the interactions are sufficiently weak, we can calculate the
behavior of Polyakov loop two-point functions from the quadratic part of
S« We have for large distances

(TrePMOOTrEP(Y)) oc ($n()$a(Y)) o exp| —Fx—v]]

where on(T) = JNMA(T)/x(T) isidentified as the string tension for the
n’'th mode at temperature T. Of course, ¢n-n = (¢n)™ implies
on(T) = on-n(T). The number of different string tensionsisthus [ 3 ], the

greatest integer less than or equal to N/2. The zero-temperature string
tension is given by

62(0) = NM#(0)/x(0)
Itiseasy to seethat the [ §- | string tensions
61(0),02(0),..,on2;(0) are al set independently within the class of
effective models. A minimal model for the confined phase exhibiting this

quadratic behavior is
N/2]

V= Z Mi TrePKTrePk

where the My are arbitrary. Each term in the sum forces TrePX = 0, and
givesrise to amass for the mode ¢.

The confining behavior of Polyakov loop two-point functions at low
temperaturesisnatural in the effective model.



Potentials of Type V;

An important class of modelsis obtained from potential with
pairwise interactions between the eigenvalues

Vo = ) () — k)
ik

Two-loop perturbation theory gives this form (Korthals Altes 1994).
An elementary calculation shows

N-1 2 ; .
o= |2 3w ( 2 ) are( 50)
=0

where v(? is the second derivative of v. Thisis amaster formularelating
the string tensions to the underlying potential. (Thisis essentially the
dispersion relation for alinear chain with arbitrary translation-invariant
quadratic couplings. nearest-neighbot, next-nearest neighbor, et cetera.)
If the sum is dominated by thej = 1 term, representing a
nearest-neighbor interaction in the space of elgenvalues, then we recover

sine-law scaling
on = [Ev () sn( ),

Casimir scaling can be obtained by avery small admixture of other
components of v,

Sine-law scaling arises naturally from a near est-neighbor
interaction in the space of Polyakov loop eigenvalues.
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Monte Carlo results for Casimir, Z(N), and sine-law scaling

We can check this by performing discrete Fourier transforms on ratios of
string tensions. Data is normalized to give fractions of the total strength
coming from nearest-neighbor, next-nearest-neighbor, et cetera,

Interactions.

d |-K=21|-k|l=2 |]j-kK=3|]-kl=4 | Ref
sine Law any | 1 0 0 0
SU(4) Z(N) | any  0.941 0.059
SU(4) 4 1 0.968(16) 0.032(7) LTW
SU(4) 4 1 0.992(25) 0.008(5) DPRV
SU(6) Z(N) | any | 0.926 0.062 0.012
SU(6) 4 1 0.960(16) 0.045(18) | -0.005(12) LTW
SU(6) 4 1 0.996(40) 0.0003(218) 0.004(26) DPRV
SU(8) Z(N) | any | 0.925 0.058 0.013 0.004
SU(8) 4 1.028(22) -0.067(24) | 0.047(32) -0.009(22) LTW
SU(4) 3 10.957(6) | 0.043(2 LT
SU(6) 3 10.930(5) | 0.065(8) 0.004(5) LT

LTW= Lucini, Teper, and Wenger (2004)
LT = Lucini and Teper (2001,2002)
DPRV = Del Debbio, Pangopoulos, Rossi, and Vicani (2002)

11




Predictive Power of Scaling

In previous work on phenomenological models of the gluon
equation of state (Meisinger, Miller, and Ogilvie 2002,2004) , we
considered models of the form

f=-p=V(©O) - ZJ. (g;')(3 Traln[1 - Pefex]

where V is a phenomenol ogically chosen potential whose role is to favor
confinement at low temperature. We studied two physically motivated
potentials. One is a quadratic function of the eigenvalues

N o1

Va=Va ) > (0a—05)(0c—0p—2m)
a=2 B=1
which appears as an O(m?T?) term in the high temperature expansions at
one-loop. This potential leadsto ofy = o1 for every N-ality. The other
potential is the logarithm of Haar measure
N o1

Ve =ve Y > In[1-cos(0, —0p)].

a=2 p=1
Such a potential might occur if Haar measure were responsible for

confinement. This potential was first studied by Dyson (1962) in his
fundamental work on random matrices. This potential leads to

which one might call " square root of Z(N) scaling”. These particular
models are now ruled out at low temperature. It isinteresting to note that
there is a potential which gives Z(N) scali ng It is the integrable potential

V9—
2(0) Jik 2( @ "y )

(Calogero and Perelomov (1978).
I nfor mation about the behavior of the different string tensions gives

usinformation on the form of the potential V, which in turn reflects
the ultimate origin of confinement.
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Z(N)Domain Walls at High T

In the deconfined phase, the Z(N) symmetry breaks spontaneously,
with N equivalent vacua characterized semiclassically by
TreP = mzP

Following Bhattacharya et al. (1992), consider the surface tension
associated with a one-dimensional kink solution of the effective equations
of motion which interpolates between different vacua. It sufficesto
consider solutions with the behavior

lim TreP = m
X—>—00

IiMTrgP = mzP
X—00

withp = 1,..,[ & ]. With each value of p, we can associate a surface
tension py.

For high temperatures, we can consider the case wherem = N, in
which case the kink interpolates between different elements of the center of
the group. There are two inequivalent straight-line paths within the Cartan
algebra. Thefirst hasthe form

PO = exp| ZZLYicq(x) |
where Yy = diag[k, ...k,N—k;..,N — k] with N — k entries k and k entries
N — k. The second is

P(X) = exp[ % kY1 q(x) ]

For all potentials of type V2, thefirst path leads to
K(N - k)
Pk = TN-1 pP1
while the second leads to

px = Kp1
and is not favored. Similar behavior occurs in the Polyakov model in
d = 2+ 1 dimensions for the string tension (Kogan and Kovner 2001). The
effective potential, written isterms of dual variables, if of type V. Itis
natural to speculate that there is a class of self-dual effective models with
identical spectral in both phases.
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Summary

- Thereisanatural class of effective field theories for the Polyakov loop

- Confining behavior is naturally obtained

- For U(N), there are N — 1 string tensions associated with the N — 1 normal
modes of the Polyakov |oop eigenvalues

- Rich pattern of mixing of operators

- Sine-law scaling is a consequence of nearest-neighbor interactions between
eigenvalues

Not Discussed

Mode mixing and the collapse of Casimir scaling
Representations with zero N-ality

Phase transitions

Large-N limit

Connection with underlying confinement mechanisms

Future Work

L attice
Finer Operator Mixing Analysis
Variant models with Z(N) symmetry: variant actions, Higgs
Direct reconstruction of V

Nonlattice
Corrections to sine-law scaling and Z(N) scaling
Allowed phases of effective action
Duality
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